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Abstract

In this report, the overview of the runs during the TRECVID 2021 by the ITI-CERTH team are
presented. ITI-CERTH participated in the Ad-hoc Video Search (AVS) and Activities in Extended
Video (ActEV) tasks. For the AVS task, our participation is based on an attention-based cross-modal
deep network architecture. As part of training this architecture, we experimented with a new hard-
negative mining approach. For the ActEV task, we improve our framework, in terms of more accurate
performance, by addressing the classification problem as multi-label rather than a single-label.

1 Introduction

In this work, the work carried out in the context of TRECVID 2021 by the ITI-CERTH1 team in
the area of video analysis, retrieval and understanding is presented. ITI-CERTH has participated
in TRECVID [1] for many years as it is one of the most popular video understanding challenges.
Especially, ITI-CERTH has participated in Search and Semantic Indexing (SIN) tasks under the
research network COST292 (TRECVID 2006-2008) and the MESH and K-SPACE (TRECVID 2007-
2008) EU-Funded research projects, correspondingly. From 2009 to 2015 [2][3][4][5][6][7][8] ITI-CERTH
team has participated as a stand-alone organization in a significant number of tasks included but not
limited to SIN, KIS, INS, and MED. In both 2016 [9] and 2017 [10], ITI-CERTH participated in the
AVS, MED, INS and SED tasks. In 2018 [11] ITI-CERTH participated in the AVS, INS and ActEV
and in 2019 [12] only in the ActEV task. Lastly, in 2020 [13] ITI-CERTH participated in the AVS,
DSDI and ActEV tasks. Taking into account the submissions mentioned above, we aim to evaluate
improved algorithms and systems. This year, ITI-CERTH participated in AVS and ActEV tasks. The
following sections will present the employed algorithms and the evaluation for the runs we performed
in the AVS and ActEV tasks, respectively.

2 Ad-hoc Video Search

The TRECVID 2021 [14] Ad-hoc Video Search (AVS) task aims to develop a system for retrieving
a ranked list of 1000 video shots for each ad-hoc textual query, ranked from the most relevant to
the least relevant shot for the query. The goal of our participation is twofold. Firstly, we evaluate
our attention-based dual encoding network on this year’s new ad-hoc textual queries. Secondly, we
evaluate a new method for hard-negative mining [15] and compared it with the baseline improved
marginal ranking loss.
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2.1 Approach

We utilize the attention-based dual encoding network presented in [16] as our baseline network. The
network is trained to transform an input video-text pair (v, c) into a new joint embedding space.
The network consists of two similar sub-networks, one for the video stream and one for the textual
one. Each sub-network consists of three levels of encoding, i.e., using mean-pooling, attention-based
bi-GRU, and 1d-CNN, layers. Following the state-of-the-art approach [17] [18] [16], the network is
trained using the improved marginal ranking loss [18].

As shown in [16] and [15], the combination of multiple models leads to improved performance. In
every run, different model configurations are utilized, resulting in different trained models. The models
are trained by modifying the following parameters: i) two positions in the architecture are considered
for inserting the attention mechanism (textual or visual stream) ii) two textual encodings are used
(BERT, W2V+BERT) iii) two optimizers and iv) three learning rates. The resulting 24 models are
combined in a late fusion scheme (i.e., averaging a given sample’s ranking in the 24 resulting ranking
lists).

The second aspect of our study relies on the evaluation of the new hard-negative mining approach.
As in [15], we follow an offline-online strategy to exclude potentially-positive samples. At the offline
stage, we randomly split the training dataset into batches, similarly to the standard training procedure.
In each batch, we compute the cosine similarity score Sbert

i,j , between all possible captions (ci, cj) inside
the batch. The BERT [19] encoding of the captions is used as the caption representations. Finally, a
threshold value p for which x% of the Sbert

i,j similarities are higher than p, is computed. At the online
stage (training stage), for an video-caption anchor (vi, ci), every sample (vj , cj) (within the batch)
with Sbert

i,j > p is excluded from the negatives, while every other sample is labeled as negative. Finally,

as hard-negative, the negative sample with the highest Sbert
i,j is selected.

2.2 Submission

The combination of four large-scale video caption datasets: MSR-VTTT [20], TGIF [21], ActivityNet
[22] and Vatex [23] is used to train our networks. The V3C1 [24] dataset is utilized to evaluate the
networks’ performance. The evaluation measure we use is the mean extended inferred average precision
(MxinfAP). And finally, as initial frame representations, a ResNet-152 (trained on the ImageNet-11k
dataset) is used.

This year we submitted four runs on the AVS 2021 main task and four additional runs for the AVS
progress subtask. Overall, we evaluate our methods on 30 different ad-hoc queries. The submitted
runs are briefly described below:

• ITI CERTH.21 run 1: The results of runs 2, 3, and 4 are combined in a late fusion scheme.

• ITI CERTH.21 run 2: Textual and visual attention-based dual encoding models using multi-
ple textual representations. Models are trained using the improved marginal ranking loss and
combined using late fusion.

• ITI CERTH.21 run 3: Textual and visual attention-based dual encoding models using multiple
textual representations. Models are trained using the new hard-negative mining approach when
the x = 1% of the samples are excluded from the hard-negative mining because of being treated
as potentially positive samples.

• ITI CERTH.21 run 4: Similar to run 3 with x = 2%.

2.3 Experimental Results

Table 1 summarizes the evaluation results of our runs for the main AVS task as well as the progress
subtask. From the presented results, we can see that that our new hard-negative mining approach
is meaningful, in the sense that it doesn’t negatively affect the performance, although by itself it
doesn’t improve it either. When models that have been trained using the improved marginal ranking
loss and the new hard-negative mining approach are combined, even in a simple late fusion scheme
as in ITI CERTH.21 run 1, we observe a small increase in performance, in the main AVS task. The
sub-optimal design choice in this run is the simple late fusion scheme: as shown in [15], using the new



hybrid model combination strategy proposed there instead of simple late fusion would have resulted
in a much more pronounced increase in performance.

Table 1: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs for the fully-
automatic AVS task.

AVS task: Main Progress
ITI CERTH.21 run 1 0.232 0.225
ITI CERTH.21 run 2 0.227 0.226
ITI CERTH.21 run 3 0.225 0.226
ITI CERTH.21 run 4 0.227 0.226

3 Activities in Extended Video

Activity recognition is the task of analysing multimedia resources like videos and photos and identify-
ing the specific movement or actions of a person and other objects. A widespread application refers to
security systems, including surveillance cameras in indoor and outdoor environments. Activity recogni-
tion in those systems deals with plenty of challenges inserted by the visual footage’s untrimmed nature,
like the large field of view, the multiple involved activities, the varying length of co-occurring activities,
and the multiple objects involved within each activity. In conjunction with the need for a real-time
response, the latter makes difficult the processing and analysis by humans. Hence, fully-automated
methods to recognise and localise spatially and temporally activities in extended untrimmed videos
are on demand. In this direction, the Activities in Extended Videos challenge (ActEV) encourage the
research of real-time automatic activity detection methods in surveillance scenarios. Thus, an exten-
sive collection of untrimmed surveillance videos such as VIRAT [25] dataset jointly with an evaluation
plan are provided, making possible the standardised evaluation of the related methods under a unified
framework.

In this work, the proposed approach consists of a three-step pipeline: object detection, tracking,
and activity classification. The method utilises YOLOv4 [26] architecture for object detection and
Euclidean distance for tracking, resulting in the creation of spatio-temporal tubelets of the detected
objects and thereby of the proposed activities, while the activity recognition employs 3D-ResNet [27]
assigning possible labels to each proposed activity. The rest of the section is organised as follows: The
following subsection gives an overview of the steps comprised in the method, outlining the parts of
the object detection and activity recognition, correspondingly. The section concludes with a report
about the submitted systems and a discussion of the results.

3.1 Approach

The task of activity recognition and localization in extended videos has the following formulation.
Given a set of videos V = {vi}, a method should be able to output a set of activities A = {ai} for all
the videos in the set. Each one of the activities ai is described by a type ti, according to a set of classes
provided by the corresponding annotation files and are depicted in Table 2, and a spatio-temporal
area li within the video in which it occurs.

Considering the challenges on detected activities in surveillance videos, this work focuses on
effectively identifying the activities co-occurring simultaneously and conducted by different actors-
objects, as well as the concurrent activities performed by the same object. Thus, an object detector
in conjunction with a tracker is employed to generate spatio-temporal tubelets for every detected
object. The classification of the proposed spatio-temporal tubelets follows the creation of the Ex-
tended Activity Bounding Box (EABBox) [13] for every tubelet considering the spatial displacement
of an object during its action. In particular, the extended tubelets can be described as a tuple
pi = (xleft, ytop, width, height, tstart, tend) consisting of the spatial and temporal boundaries of an
object. Similar to our previous work [13], the process of EABBox creation aims to capture the whole



field of view of the object’s movement providing useful information for the final classification. Further
details of the pipeline are described in the following sections.

Table 2: Activity classes in ActEV challenge 2020.

Activity Classes
person closes facility

or vehicle door
person closes trunk vehicle drops off person

person enters facility or vehicle person exits facility or vehicle person interacts object

person loads vehicle person opens trunk
person opens facility

or vehicle door
person person interaction person pickups object vehicle picks up person

person pulls object person pushs object person rides bicycle
person sets down object person talks to person person carries heavy object
person unloads vehicle person carries object person crouches

person gestures person runs person sits
person stands person walks person talks on phone

person texts on phone person uses tool vehicle moves
vehicle starts vehicle stops vehicle turns left

vehicle turns right vehicle makes u turn

3.1.1 Object Detection

In this section, the spatio-temporal tubelets generation is introduced, elaborating the videos in a frame-
wise manner. This stage includes the detection and tracking methods to identify the candidate objects
within each video and propose the spatio-temporal tubelets for activity classification. Taking into
account the fast and accurate performance of YOLOv4 [26] in real-time applications, achieving 43.5%
Average Precision (AP) for the Microsoft COCO [28] dataset at a real-time speed of approximately
65 FPS on Tesla V100; we adopt it as means to capture the spatial boundaries of the objects in every
frame of a video. YOLOv4 [26] composes an improved version of YOLOv3 [29] as it is typified as a
state-of-the-art detector combining a fast operating speed in production systems and optimisations for
parallel computations. For initialisation purposes, we utilised the pre-trained model of YOLOv4 [26]
using Microsoft COCO [28] which consists of objects classes relevant to the objects that participate in
the activities of the challenge’s dataset, including but not limited to ”person”, ”car” and ”truck”. An
enhanced configuration of the framework was introduced including the fine-tuning of YOLOv4 [26]
using the VIRAT [25] dataset. The latter was split into training and validation sets according to the
annotations of ActEV challenge. We fine-tuned the model for 20 epochs to target only the detection
of vehicle and person objects. Hence, the time-consuming post-processing steps were discarded as the
generated predictions are more accurate, considering only the desired objects’ types. This methodology
is partially adopted in our relevant research described in [30], where there is a detailed qualitative and
quantitive explanation of the improvements that fine-tuning provides. The detected objects for each
frame are described by a bounding box and the corresponding confidence score.

Along with object detection, an object tracker was adopted in order to link object detections
over time and calculate their trajectories. For this purpose, the Euclidean distance was deployed as
a metric to measure the distance among the detected objects in subsequent frames. The algorithm
calculates the distance between the current object on frame t and the objects on frame t + 1. An
adjacent object of frame t+1 is selected as the future position of the current object when its distance
is above a threshold value. The Euclidean distance is calculated between the centroids of the objects’
bounding boxes. The result of this stage is the spatio-temporal tubelets generation for each detected
object.

3.1.2 Post-processing

In order to have ready the proposed spatio-temporal tubelets for the final step of activity classification,
an additional procedure is required, that of EABBox creation. The latter elaborates the spatial



Figure 1: First row: frames sequence with the detected object by YOLOv4 [26]. Second row: frames
sequence after EABBox creation.

boundaries of each spatio-temporal tubelet in order to extend the field of view of the object considering
its whole trajectory. Thus, the union of the separated bounding boxes of each tubelet is calculated
as it is occurred from the spatial displacement of the object during its movement; this is illustrated
in figure 1. Some benefits of EABBox creation, are the minimisation of the effect that the cropping
has on the frames reshaping them according to the size of a bounding box, which frequently leads
to a stretched and deform illustration of the objects. Another reason is that useful information from
the background is included in the extended version of bounding boxes which can be helpful in the
following procedure of activity classification. Finally as already mentioned, a spatio-temporal tubelet
proposal is defined by a tuple pi = (xleft, ytop, width, height, tstart, tend) consisting of its spatial and
temporal boundaries.

3.1.3 Activity Recognition

The final stage of the process is the activity classification. Given the spatio-temporal tubelets of the
tracked objects, a 3D-ResNet [27] was employed to label the proposed tubeletes. The selection of
this model was highly correlated with its ability to process the data in a 3D state also exploiting the
temporal information that they include in contrast to 2D Convolutional Neural Networks (CNNs) that
can learn only spatial correlations. The model was trained and validated using the provided videos
of the VIRAT [25] dataset, according to the annotations of ActEV for splitting it into training and
validation sets, respectively. We follow the approach utilised in [30], classified the proposed tubeletes in
a multi-label manner. In other words, the employed classifier assigns to each proposed spatio-temporal
tubelet more than one label to their whole trajectory or different temporal sub-parts of their trajectory.
A weighted binary cross-entropy loss function was incorporated regarding the model’s architecture to
transform the problem into a multi-label objective and deal with the unbalanced dataset. Lastly, a
Soft-NMS [31] is applied to refine the classified activities proposals.

3D-ResNet is a deep neural network model which comprises a 3D-convolutional-based architecture
and achieves fast processing for activity recognition in a real-time state, running in batch-of-frames.
The architecture consists of four sequential bottleneck blocks, where each block is composed of three
3D-convolution layers (with variant kernel sizes), batch normalisation, and ReLU activation layers.
The temporal dimension of the input is set equal to 16. For the model’s initialisation, the weights of
the Kinetics dataset [32] were pre-loaded as it covers a large number of human activity classes.

3.2 Submission

In this section, we present the two systems that were submitted and the evaluation results of the
challenge in figure 2 and on table 3.

• M4D 2021-baseline: This system uses YOLOv4 [26], fine-tuned in the training and validation
set of ActEV, for object detection and the Euclidean distance for tracking. Subsequently, the
corresponding data sets were used for training and validating the activity classifier 3D-Resnet
[27] to recognise the activities of the tracked objects, performing in a multi-label manner.

• M4D 2021-M4D 2021 S1: This system combines the first system with some additional steps of
improvements in the output set of activities proposals. The latter is conducted using Soft-NMS
[31] to refine the temporal boundaries of the recognised activities.



Figure 2: ActEV 2021 Leaderboard.

Table 3: Our ActEV challenge 2021 results, ranked using PARTIAL AUDC as primary metric.

System nAUDC@0.2Tfa
Mean-

Pmiss@0.15Tfa

Mean-W Pmiss@
0.15Rfa

M4D 2021-baseline 0.85484 0.79732 0.87719

M4D 2021-M4D 2021 S1 0.84658 0.79410 0.88521

3.3 Experimental Results

In this section, further discussion about the performance of our both submitted systems is reported.
The significant change that discriminates our submissions in 2021 from those in 2020 is the different
manner of training and applying activity classifiers, namely the transition from multi-class to multi-
label approach. In particular, compared to our reported results [13] on ActEV 2020, we succeed to
decrease the primary metric, PARTIAL AUDC, in both of our submissions on ActEV 2021. This is
due to the fact that a multi-label approach of training corresponds more efficiently to the process of
assigning labels to the proposed spatio-temporal tubelets, as each one of them is related to an object
which can perform more than one activity at the same time or at different time intervals during
its trajectory. Along with the multi-label activity classification, YOLOv4 [26] fine-tuning influences
in a positive direction the results, as it outputs only the objects types (person and vehicle) that
participate in the annotated activities, excluding the time-consuming post-processing steps for the
objects’ detections refinement. Lastly, regarding our second submission, M4D 2021-M4D 2021 S1,
we observed that the addition of the Soft-NMS [31] algorithm improves the results as it offers the
possibility to eliminate duplicate activities which affect negatively the results.



4 Conclusions

In this paper, the evaluation of ITI-CERTH during the TRECVID 2021 challenge [14] is reported.
ITI-CERTH participated in the AVS and ActEV tasks to evaluate new techniques and algorithms.
Regarding the AVS task, we utilized an attention-based cross-modal network to learn a new joint
feature space for the text and video instances. We experimented with a new hard-negative mining
approach for training this network architecture; and, we contemplated on possible approaches to
combining the results of multiple trained instances of this network architecture that were trained
using different settings for the hard-negative mining and for other training parameters. At the ActEV
task, a method based on an object detector, an object tracker, and a multi-label activity classifier is
presented. The method relies on a real-time object detector and a 3D-CNN activity classifier. Though
the results are not expected, some aspects of the process seem promising. We plan to intensify our
effort for improved systems and proper model training in the future.
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